Ëàáîðàòîðíàÿ ðàáîòà: Òåîðèÿ âåðîÿòíîñòåé
Ëàáîðàòîðíàÿ ðàáîòà: Òåîðèÿ âåðîÿòíîñòåé
1. Íåçàâèñèìî
äðóã îò äðóãà 10 ÷åë. Ñàäÿòñÿ â ïîåçä, ñîäåðæàùèé 15 âàãîíîâ.
Âåðîÿòíîñòü òîãî, ÷òî âñå îíè ïîåäóò â ðàçíûõ âàãîíàõ?
Ð= ÷èñëî áëèçêèõ èõîäîâ = 15….14…….- 6 =
15 ! -2
×èñëî ýëåìåíò. èñõîäîâ 15*15*15…15
5 ! »
1,88 * 1å
10 ðàç 50
15 _____________________________________
2.  ýëåêòðè÷åñêîé öåïè ïîñëåäîâàòåëüíî âêëþ÷åíû 3 ýëåìåíòà,
ðàáîòàþùèå
íåçàâèñèìî äðóã îò äðóãà. Èõ âåð-òü îòêàçîâ ðàâíû 1 49
1 .
Íàéòè âåðîÿòíîñòü òîãî, ÷òî òîêà íå áóäåò?
50 ; 50 ; 4
-- - -
À –òîê åñòü
Ài – i-é
ïðèáîð íå èñïðàâåí
Ð (À1)
= 49 Ð (À2)= 1 Ð ( À3) = 3
50 ; 50 ; 4
_
Ð (À)=1-Ð(À) = 1-Ð (À1
À2 À3
) = 1-Ð (À1) Ð (À2)* Ð (À3) = 1- 49 * 1-
3 = 9,753
50 50 4 10,000
____________________________________________________________________________________________
3. Âåð-òü ïîïàäàíèÿ õîòÿ áû ðàç â ìèøåíü ïðè 12-òè âûñòðåëàõ
ðàâíî 41 .
Íàéäèòå âåð-òü ïîïàäàíèÿ ïðè îäíîì
âûñòðåëå? 50
Ài – óñïåøíûé i –
âûñòðåë
_________
Ð = 41 = 1-Ð ( À1 …..À12) – íå ïîïàëè íè â îäíîì
ñëó÷àå èç 12-è âûñòðåëîâ =
50
__ __ _ 12 12
= 1 – Ð (À1) …..Ð (À12) = 1 – Ð (À1) ; 41 =
1-Ð (À1)
50
Íàéòè Ð (À1)
_ 12
Ð (À1) = 1- 41
= 9
50 50
_ 12__
Ð (À1) = Ö 9
50
_ 12__
Ð (À1) = 1-Ð (À1) = 1 - Ö 9 »
0,133
50
___________________________________________
4. Èìåþòñÿ
28 áèëåòîâ, íà êàæäîì èç êîòîðûõ íàïèñàíî óñëîâèå íåñêîëüêèõ
çàäà÷.  13 áèëåòàõ çàäà÷è ïî ñòàòèñòèêå, à â îñòàëüíûõ 15 –
çàäà÷è ïî òåîðèè
âåðîÿòíîñòè. 3 ñòóäåíòà âûáèðàþò íà óäà÷ó ïî îäíîìó áèëåòó.
Íàéòè âåðîÿòíîñòü
òîãî, ÷òî õîòÿ áû îäíîìó èç ñòóäåíòîâ íå äîñòàíåòñÿ çàäà÷à
ïî òåîðèè âåðîÿòíîñòè.
Ài –ñòóäåíòó äîñòàíåòñÿ çàäà÷à ïî
òåîðèè âåðîÿòíîñòè
À – âñåì äîñòàíåòñÿ çàäà÷à ïî òåîð. âåðîÿò.
À = À1 À2 À3
À – õîòÿ áû îäíîìó íå äîñòàíåòñÿ çàäà÷à ïî òåîð.âåðîÿò.
_
Ð (À) = 1 – Ð(À) = 1- Ð (À1
À2 À3)
= 1 – Ð *(À3) * Ð (À1 À2) = 1-Ð *(À3)
* Ð *
À1À2 À1À2 À1
*(À2)*Ð (À1)=
1 – 15 * 14 * 13 = 0,265
28 27
26
5. Â
ÿùèêå ñîäåðæèòñÿ 6 äåòàëåé, èçãîòîâëåííûõ íà 1-ì çàâîäå, 2 äåòàëè íà 2-ì çàâîäå
è 4 äåòàëè íà 3-ì çàâîäå. Âåðîÿòíîñòü áðàêà íà çàâîäàõ ðàâíà
19 , 19 è 59
20 50 100
Íàéòè âåðîÿòíîñòü òîãî, ÷òî íàóäà÷ó èçâëå÷åííàÿ äåòàëü áóäåò
êà÷åñòâåííàÿ.
Í1 – äåòàëü ñ 1-ãî
çàâîäà
Í2 - äåòàëü ñî 2-ãî
çàâîäà
Í3 - äåòàëü ñ 3-ãî
çàâîäà.
Ð(Í1) = 6 = 1
; Ð(Í2) = 2
= 1 ; Ð(Í3)
= 4 = 1
12 2 12 6
12 3
À - èçâëå÷åííàÿ äåòàëü êà÷åñòâåííàÿ
_ _
_ _
Ð (À) = Ð *(À) * Ð (Í1)
+ Ð *(À) * Ð (Í2) + Ð *(À)*Ð (Í3) =19 * 1 + 19 * 1
+ 59 *1=147=>
Í1 _ Í2
Í3
20 2 50 6 100 3 200
Ð (À) = 1 – Ð (À) = 53/200
__________________________________________________________________________________________
6. Íåçàâèñèìûå
âåðîÿòíûå âåëè÷èíû Õ,Ó ïðåäñòàâëÿþò òîëüêî öåëûå çíà÷åíèÿ
Õ: îò 1 äî 16 ñ âåð-þ 1
16
Ó: îò 1 äî 23 ñ âåð-þ 1
23
Ð ( Õ+Ó = 32)
Õ Ó Ð (Õ=9; Õ =23) = P (Õ=9) * Ð (Ó =
23) = 1 * 1
9 23
16 23
10 22
P
( X+y=32
)=P ( X=8, y=23 ) + P ( X=10; y=12 )+…+P ( y=16,X=16 )=
16 16 = 8* 1 * 1
= 1
16
23 46
_________________________________________________________________________________________
7. Íåçàâèñèìûå
ñëó÷àéíûå âåëè÷èíû Õ , Ó ïðèíèìàåò òîëüêî öåëûå çíà÷åíèÿ.
Õ: îò 1 äî 14 ñ âåðîÿòíîñòüþ 1
14
Ó: îò 1 äî 7 ñ âåðîÿòíîñòüþ 1
7
Íàéòè âåðîÿòíîñòü òîãî, ÷òî Ð (Õ £ Ó)
Åñëè Ó = 7, òî 1 £ Õ £
6 1 * 6
7
14
Åñëè Ó = 6 òî 1£
Õ £ 5 1 * 5
7
14
Åñëè Ó = 5 òî 1£
Õ £ 4 1 * 4
7
14
Åñëè Ó = 4 òî 1£
Õ £ 3 1 *
3
7
14
Åñëè Ó = 3 òî 1£
Õ £ 2 1 *
2
7
14
Åñëè Ó = 2 òî 1 = Õ 1
* 1
7
14
Ð (Õ<Ó) = 1
* 6 + 1 * 5 + 1 * 1 = 1+2+3+4+5+6
= 21 = 3
7 14 7 14 7
4 7 * 14 714 14
_________________________________________________________________________________________
8. Íåçàâèñèìûå
âåëè÷èíû Õ1……Õ7
ïðèíèìàþò òîëüêî öåëûå çíà÷åíèÿ îò
0 äî 10 ñ âåðîÿòíîñòüþ 1
11
Íàéòè âåðîÿòíîñòü òîãî , ÷òî Ð(Õ1…….Õ7) = 0
Ð (Õ1……Õ7 =0) = 1-Ð (Õ1….Õ7 ¹
0) = 1- Ð( Õ1¹0….Õ7 ¹ )=1-Ð( Õ1¹0 )*Ð (Õ2¹0)

7
*….* Ð(Õ7¹0) = 1 – 10 * 10 =
1 - 10
11……. 11 11
7
ðàç
9. Íåçàâèñèìûå
ñëó÷àéíûå âåëè÷èíû Õ, Ó, Z ïðèíèìàþò öåëûå çíà÷åíèÿ
Õ: îò 1 äî 13 ñ âåðîÿòí-þ 1
13
Ó: îò 1 äî 12 _____/_____ 1
12
Z îò 1 äî 9 _____/_____ 1
9
Âåðîÿòíîñòü òîãî, ÷òî Õ;Ó;Z. ïðèìóò ðàçíûå
çíà÷åíèÿ?
Ïóñòü “Z” ïðèíÿëî êàêîå-òî çíà÷åíèå
“à”. Ð (Ó¹à) = 11
12
Ïóñòü ïðè ýòîì Ó= â
Ð (Z ¹ a; Z ¹ â)
= 11 ; Ð = 11 * 11
13 12 13.
_______________________________________________________________________________________
10.
ì = Ì (Õ) - ? Ì (Õ) =
0,1+1,6+3,5 = 5,2
Ð ( Õ < ì) -
? Ð ( Õ < 5,2) = Ð(Õ=1) +
Ð(Õ=4) = 0,5
___________________________________________________________________________________________
11.
Ä (Õ) - ?
Ì(Õ) = 0,4+0,9+2,5=3,8
2
Ì (Õ ) = 0,8+2,7+12,5 = 16
2
2 2
Ä (Õ) = Ì (Õ ) – Ì (Õ) = 16 - 3,8 = 1,56
______________________________________________________________________________________________________________
12. Íåçàâèñèìûå âåëè÷èíû Õ1,…….,Õ9 ïðèíèìàþò öåëîå çíà÷åíèå – 8, - 7,…..,5,6
ñ âåðîÿòíîñòüþ 1
15
9
Íàéòè Ì (Õ1,Õ2,…..,Õ9) *
Ì (Õ2,….,Õ9)
= Ì (Õ1) * Ì(Õ2)*….*
Ì(Õ9) =Ì (Õ9)
Ì (Õ1) = -8 * 1
– 7 * 1 * 6 * 1 - … + 5 * 1 + 6 * 1 =
1 (-8-7-5….+5+6) = -1
15 15
15 15 15 15



9 9
= Ì (Õ1) = ( -1) = -1
13.
Õ |
8 |
10 |
12 |
14 |
16 |
Ð |
0,25 |
0,2 |
0,2 |
0,2 |
0,25 |

ì= Ì
(Õ)-? Ì (Õ) = 2 + 2 + 1,2 + 2,8 + 4 = 12

ä(Õ)
-? 2 2
Ð ( (Õ-ì) <
d)
Ä (Õ) = Ì (Õ – Ì (Õ) ) = Ì (Õ-12)

Õ-12 |
-4 |
-2 |
0 |
2 |
4 |
Ð |
0,25 |
0,2 |
0,1 |
0,2 |
0,25 |
2
(Õ-12)
|
1 |
4 |
0 |
Ð |
0,5 |
0,4 |
0,1 |
2
Ì (Õ-Ð) = 8+1,6
_____
d (Õ) = Ö d (Õ) » 3,1

Ð ( Õ –12 <
3,1 ) = Ð (-3,1<Õ –12 < 3,1) = Ð
(8,9<Õ<15,1)
=
= Ð (Õ=10) + Ð (Õ=12) + Ð (Õ=14) = 0,5
___________________________________________________________________________________________________________
14. Õ, Ó – íåèçâåñòíûå ñëó÷àéíûå âåëè÷èíû





Ì (Õ) =
3 8 2
2 2
2 2
Ì (Ó) =2 ½ Ä(ÕÓ) = Ì( ÕÓ ) – Ì (ÕÓ) =
Ì (Õ ) * Ì (Ó ) – [ Ì (Õ)*Ì (Õ)]
=
Ä(Õ) = 4 ½
2 2 2
2
Ä(Ó) = 8 ½
Ä (Õ)=Ì(Õ ) – Ì (Õ) = Ì (Õ ) = Ä (Õ) + Ì (Õ) = 4 + 9 = 13
Ä (Õ Ó) 2 2
Ì (Ó ) = Ä (Õ) + Ì (Ó) =
8 + 4 = 12

2
= 12*13 –
(2 * 3) = 156 – 36 = 120
__________________________________________________________________________
15. Õ, Ó – íåçàâèñèìûå íåèçâåñòíûå âåëè÷èíû. Ïðèíèìàþò
çíà÷åíèå 0 è 1.
Ð (Õ=0) = 0,3 ½
2 2 2
2 2
Ð (Ó=0) = 0,6 ½
Ì(Õ+Ó) + Ì (Õ + 2õó +ó ) = Ì (Õ ) +2Ì (Õ) * Ì (Ó) + Ì (Ó ) =
2
Ì (Õ+Ó)
2
Ì (Õ) = 0,7 = Ì (Õ )
2
Ì (Ó) = 0,4 = Ì ( Ó )
= 0,7 + 2 * 0,7 * 0,4 + 0,4 = 1,66
16. Õ, Ó íåçàâèñèìûå íåèçâåñòíûå âåëè÷èíû Ïðèíèìàþò çíà÷åíèå
0 è 1.
(çàäàíèå êàê â 15).
õ - ó
Ì (3 ) - ?
õ-ó õ -ó õ -ó
Ì (3 ) = Ì (3 * 3 ) =Ì (3 ) * Ì (3 ) = 2,4
* 2 = 1,6
3

Õ
-ó
Ì (3 ) = 0,3 + 2,1 = 2,4 Ì (3 )
= 0,5 + 0,5 = 4 * 0,5 = 1
3 3 3
_____________________________________________________________________________________________________________
17. Ïðîèçâîäèòñÿ 10240 íåçàâèñèìûõ èñïûòàíèé, ñîñòîÿùèõ â
òîì, ÷òî
ïîäáðàñûâàþòñÿ 9 ìîíåò
Õ – ÷èñëî èñïûòàíèé, â êîòîðûõ âûïàëî 3 ãåðáà
Ì (Õ) -?
1-èñïò. - 9 ìîíåò
9 èñïûòàíèé Ð =
1
2
3
3 6 3 9
Ð(Ã = 3) = Ñ9 * ( 1
) * ( 1 ) = Ñ9 * ( 1
) = 84 * 1 - 21 = …
2
2 2 512 128
n = 10240 èñïûòàíèé
Ð = 21 ; Ì (Õ) = np = 21
* 10240 = 1680
128
128
18. Â ñåðèè íåçàâèñèìûõ èñïûòàíèé (îäíî èñïûòàíèå çà
åä.âðåìåíè)
âåðîÿòíîñòü íàñòóïëåíèÿ À ðàâíà 1
8.
Ïóñòü Ò-âðåìÿ îæèäàíèÿ íàñòóïëåíèÿ ñîáûòèÿ À 14 ðàç. Íàéòè Ì
(Ò)1 Ä (Ò).
Õ1 – âðåìÿ îæèäàíèÿ äî
ïåðâîãî íàñòóïëåíèÿ À
Õ2 – âðåìÿ îæèäàíèÿ îò
ïåðâîãî íàñòóïëåíèÿ À äî 2-ãî
Ò = Õ1 + Õ2 +Õ3 +
…..Õ14
Õi Ð = 1
8 7/8
Ì (Õi)
= 1 = 8 ; d = 7 Ä (Õi) = d =
= 56

8 8 2 2
p 1/8
Ì (Ò) = 14Ì * (Õ1) 14
* 8 = 112
Ä (Ò) = Ä(X1 ) = 14 * 56 = 784
19. Âåëè÷èíû
Õ1 …..Õ320 ðàñïðåäåëåíû ïî Áèíîìèíàëüíîìó
çàêîíó ñ ïàðàìåòðàìè
ï =4, ð
= 3 Íàéòè Ì (Õ1 + Õ2 + …+ Õ320)=?
8
2 2 2
Ì (Õ1 + …..+Õ 320) = 320Ì (Õ1 )
= Õ1 – áèíîìèíàëüíîå
2 2 Ì
(Õ1) = ïð = 3
= Ì(Õ1 ) = Ä(Õ1) + Ì (Õ1) = 2

2
Ä (Õ1 ) = nðq = 3 * 5 = 5
= 15
+ 3 = 15 + 9 = 51
2 8 16
16 2 16 4 16
= 320 * 51 = 1020
16
_____________________________________________________________________________________________________________________
20.
Âåëè÷èíû Õ1 …..Õ18 ðàñïðåäåëåíû
ïî çàêîíó Ïóàññîíà ñ îäèíàêîâûì
ìàò.
îæèäàíèÿì ðàâíûì 8.
2 2
Íàéòè Ì
(Õ1 +…+ Õ18 ) - ?
M (Õ) = Ä (Õ) = l = 8
2
2 2 2
Ì (Õ1 +…+ Õ18 ) = 18 Ì (Õ1 ) = 18 (Ä (Õ1) + Ì (Õi ) )=18(8 + 64)=18 * 72=1296
_________________________________________________________________________________________________________
21. Õ
– ðàâíîìåðíî ðàñïðåäåë¸í íà îòð. [ - 8,2 ]
Ð ( 1 )>5 = Ð (0< Õ <1 ) = > (0<
Õ <0,5) =
Õ 5
1 – 5 >0 ; 1 – 5Õ >
0; Õ –1/5 < 0 Û (0< Õ <0,5)
Õ
Õ Õ
1 –
5Õ > 0; Õ – 1/5 < 0
Õ Õ


[ õ, â ]
0,Õ>à
0; Õ <à
f
(Õ)= 1 ;
à < Õ < â F (Õ) = õ
– à ; à £ Õ £ à Û 0< Õ 1/5
â –î â –à
0,Õ >
â 1, Õ >B

F
(Õ) = Õ + 8 = F (1/5) - F ( 0 ) =1/5 + 8 - 8 = 1
5 10 10 50
_______________________________________________________________________________________________________________________
22. Õ –
ðàâíîìåðíî ðàñïðåäåëåíà íà îòð. [ -17; 10 ]
2 2
Ð ( Õ > 64) = 1- Ð ( Õ < 64) = 1 – 16
27
2
Ð (Õ < 64 ) = Ð (-8 < Õ <8) =
0; Õ < -17
F(Õ) = Õ + 17 , -17 £ Õ £ 10
27
1, Õ > 10

= F (8) – F (-8) = 8 + 17 - -8 +
17 = 16
27 27 27
______________________________________________________________________________________________________________
23.
Õ – ðàâíîìåðíî
ðàñïðåäåëåíà íà îòð. [ -1; 1 ]
8/9 X [a,b] ; f (x)
Ì
( Õ ) a
0; x <-1
M(x)= ∫ x f(x) dx f (x)=
-1<x<1
b 0; x>1
a
M(y(x))=∫ y (x) f (x) dx
b
8/9 1 8/9 17/9 1
M(X
) = ∫ ½* X DX = ½ * X = 9/17
-1 17/9 -1
24.
Õ – ðàâíîìåðíî
ðàñïðåäåëåíà íà îòð. [ 0.1 ]
9/10
9/10
Ä
( 19Õ ) = 361 (Õ )
9/10
9/10 2 2 9/10 9/4 2
9/10 9/10 * 2
Ä
(Õ ) = Ì ( (Õ
) ) - Ì (Õ ) = Ì (Õ ) -
Ì (Õ ) Õ
__________________________________________________________________________________________________________
25. Õ – ðàâíîìåðíî ðàñïðåäåëåíà íà îòð. [ 5; 8 ] * Ä (24x+ 36) - ?
Ä
(24Õ + 36) = Ä (24Õ) = 576 * Ä (Õ) = 576 * 3 = 432
2
4
Ä
(Õ) = ( â – à )
12
2
Ä
(Õ) = 8 – 5 = 9 = 3
12 12 4
_______________________________________________________________________________________________________________
26.
Õ1,……Õ2 – Íåçàâèñèìûå è ðàñïðåäåëåííûå ïî
ïîêàçàòåëüíîìó çàêîíó.
2
Íàéòè
Ì [ (Õ1 + Õ2 + …..+ Õ10) ], åñëè Ì (Õi ) = 4.
Ì
(Õ) = 1
l
Ä
(Õ) = 1
2
l
M
(Õi ) = > Ä (Õi) = 16
2
2
2
Ì [ (Õ1 +….+ Õ10) ]=Ä(Õ1 +…+ Õ10) + Ì (Õ1 +….+ Õ10) =10Ä (Õ1)+[ 10Ì (Õ1) ]=
2
= 160 +
( 10 * 4) = 1760
_________________________________________________________________________________________________________________
2
Ì(Õ)
=1/ l ;
Ä(Õ) = 1/l
27. Õ –ðàñïðåäåëåí ïî ïîêàçàòåëüíîìó ïðèçíàêó
2
Íàéòè Ì
[ (Õ + 8) ] , åñëè Ä (Õ) = 36 Ì (Õ)=6
2
2
2 2
Ì (Õ +
8) = M(Õ + 16õ + 64) = Ì (Õ ) + 16Ì
(Õ) + Ì (64) = Ä (Õ) + Ì (Õ) +
+
16 Ì(Õ) + 64 =36 + 36
+ 96 + 64 =232
____________________________________________________________________________________________________________
28. Õ
–ïîêàçàòåëüíîå ðàñïðåäåëåíèå; Õ – ïîêàçàòåëüíûé çàêîí
0, Õ < 0
F (Õ) = -2õ
1 – å , Õ >0, Íàéòè Ln (1
– Ð ( Õ < 6) ) = Ln (1 – F (6) ) =


-6/7
-6/7 -6/7
=
F (6) = 1 – å = Ln ( 1 – (1 – å ) ) = Ln å = - 6/7
29.
(Õ) - ñëó÷àéíàÿ âåëè÷èíà
0, Õ < 10
ƒ
(Õ) = Ñ ; Õ ≥ 10
5
Õ
Ñ - ? ; Ì (Õ)
- ?
¥ ¥ îïð.
B ¥ -5
∫ ƒ (Õ)dõ = 1 => ∫ ñ dõ = lim ∫ = cdx
= C lim ∫ X dx =
10 10 5
b->¥ 10 5 b->¥ 10
Õ X
b 


-4
-4 4 4 4
= C * lim X = C lim - b + 10
= C * 10 = > 1 = C 10 = >
b->¥ -4 b->¥ 4 4
4 4
10
4
=> C =
4 * 10
0; Õ < 10
ƒ
(Õ) = 4
4 * 10 , Õ ³ 10
5
Õ
¥ ¥ 4
Ì
(Õ) = ∫ Õ ƒ (Õ) dx = ∫ 4 *
10 dx
10 10
4
Õ
_________________________________________________________________________________
30.
Õ – íîðìàëüíàÿ ñëó÷àéíàÿ âåëè÷èíà
Ì
(Õ) = 16
Ä (Õ) = 25
?
– Ð (Õ>10,5)
=
1 - f 10,5 – 16 = 0,5 + f (1,1) = 0,5 + 0,364 =
0,864
2
5
________________________________________________________________________________________
1. Ð (d £ X £ b ) = f b – m - f d - m
d
d
2. P ( X < b ) = 1 + f b – m
2
d
3. P ( X > b ) = 1 - f b – m
2 d